Pairwise Analysis Can Account for Network Structures Arising from Spike-Timing Dependent Plasticity
نویسندگان
چکیده
Spike timing-dependent plasticity (STDP) modifies synaptic strengths based on timing information available locally at each synapse. Despite this, it induces global structures within a recurrently connected network. We study such structures both through simulations and by analyzing the effects of STDP on pair-wise interactions of neurons. We show how conventional STDP acts as a loop-eliminating mechanism and organizes neurons into in- and out-hubs. Loop-elimination increases when depression dominates and turns into loop-generation when potentiation dominates. STDP with a shifted temporal window such that coincident spikes cause depression enhances recurrent connections and functions as a strict buffering mechanism that maintains a roughly constant average firing rate. STDP with the opposite temporal shift functions as a loop eliminator at low rates and as a potent loop generator at higher rates. In general, studying pairwise interactions of neurons provides important insights about the structures that STDP can produce in large networks.
منابع مشابه
Spike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملEffects of Firing Variability on Network Structures with Spike-Timing-Dependent Plasticity
Synaptic plasticity is believed to be the biological substrate underlying learning and memory. One of the most widespread forms of synaptic plasticity, spike-timing-dependent plasticity (STDP), uses the spike timing information of presynaptic and postsynaptic neurons to induce synaptic potentiation or depression. An open question is how STDP organizes the connectivity patterns in neuronal circu...
متن کاملAnalyzing spike-timing- dependent plasticity in recurrent neuronal networks
Computational tasks, such as object recognition and sound localization, rely on specific, highly organized neuronal structures in the brain. A representation of this kind of network organization is the neuronal map, where neighboring neurons are sensitive to external stimuli that possess some similarity.1, 2 To achieve this, the pairwise connections between neurons, called synapses, form a spec...
متن کاملTwo-Trace Model for Spike-Timing-Dependent Synaptic Plasticity
We present an effective model for timing-dependent synaptic plasticity (STDP) in terms of two interacting traces, corresponding to the fraction of activated NMDA receptors and the [Formula: see text] concentration in the dendritic spine of the postsynaptic neuron. This model intends to bridge the worlds of existing simplistic phenomenological rules and highly detailed models, thus constituting ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2013